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Abstract: In the era of urban digitization, smart cities rely on interconnected devices and data-driven
infrastructure to deliver sustainable, efficient, and intelligent services. However, the integration of cyber-physical
systems into transportation networks introduces significant cybersecurity risks, such as data breaches, denial of
service (DoS), GPS spoofing, and unauthorized access. This study addresses these challenges by proposing a
robust hybrid machine learning model designed to detect and classify cyber-attacks in smart transportation
systems. The model integrates Neural Networks (NN), XGBoost, and Logistic Regression with an Attention
mechanism to leverage both spatial and temporal dependencies within the data. To enhance classification
performance, especially for rare attack types like Brute Force and Whitewash, the Synthetic Minority Over-
sampling Technique (SMOTE) is applied to mitigate class imbalance. The model is evaluated using metrics such
as Accuracy (0.9153), Precision (1.0000), Recall (0.8462), F1-Score (0.9167), and ROC-AUC (1.0000), indicating
strong detection capabilities and low false positive rates. Extensive data preprocessing using tools like NumPy
and Pandas ensures reliable input, while visualization libraries like Matplotlib and Seaborn support interpretability
through graphs and heatmaps. Results from the confusion matrix and correlation heatmap confirm the critical role
of trust-related features and highlight the model’s effectiveness in identifying complex malicious behaviors. This
approach presents a scalable, data-driven security framework for smart mobility, improving both trust and
resilience in intelligent transportation systems.
Keywords: Smart Cities, Cybersecurity, Transportation Systems, Neural Networks, XGBoost, Attention
Mechanism, Trust Management, Attack Detection, 10T, Machine Learning.

| INTRODUCTION
Smart cities represent a forward-thinking approach to urban development, leveraging technologies like
Information and Communication Technology (ICT) and the Internet of Things (10T) to improve residents' quality
of life, enhance public services, and support sustainable growth [1]. These cities rely on interconnected sensors
and devices to collect and analyze real-time data, enabling efficient infrastructure management, intelligent
transportation, energy conservation, and improved public safety. Driven by rapid urbanization and infrastructure
demands, smart city initiatives transform how urban environments function and interact with citizens, ultimately
creating responsive ecosystems that enhance everyday living [2]. The Internet of Things (l1oT), first introduced in
1999 at MIT, refers to a global network of interconnected devices capable of sharing data and making autonomous
decisions. Enabled by advances in compact electronics and affordable high-speed internet, 10T has transformed
ordinary objects into intelligent, collaborative systems forming the backbone of smart infrastructure [3]. This
connectivity fosters an intelligent communication layer that integrates countless digital devices. Projects like the
Bhopal Smart City have explored 10T architectures, communication protocols, and real-world applications such
as noise monitoring. By treating 10T devices as service providers akin to cloud platforms, researchers have bridged
physical infrastructure with digital services, paving the way for scalable and innovative smart city solutions [4].
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Fig. 1 loT in Smart Cities [5].
As cyber systems increasingly constitute the underpinning digital infrastructure for smart transportation,
cybersecurity can then be considered a paramount concern. The systems involve a complex arrangement of loT
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devices, sensors, cloud platforms, and communication channels that functions so as to constantly collect and
transmit real-time data and on-the-fly analyses. Yet somehow, having so much interconnectivity has likewise
exposed them through windows of susceptibilities to various forms of cyber-attacks, such as breaches of data,
ransomwares, GPS spoofing, denial of service (DoS), and unauthorized access. These attacks threaten data
integrity and privacy and even jeopardize enormous disruptions in transportation activities, endangering public
trust, safety, and urban operations [6]. Security breaches for smart transportation cause effects that go beyond
technical disruption. An intelligent traffic control system, if compromised, could impose congestion, delay
emergency response services, or cause accidents. Such breaches may have authorized access to sensitive personal
data or unauthorized control of vehicle systems by one kind or another. With this, as the implementation of
autonomous vehicles and connected mobility platforms grows, even a minor security issue may turn into a huge
one impacting whole urban infrastructure [7]. Data privacy and trust become two indispensable pillars on which
any secure smart transport framework rests. Data confidentiality must be ensured with data authenticity and
availability, or else one cannot rely upon the system. Trust management systems allow for the instant evaluation
of credibility when it comes to devices and data sources, which then serve to weed out malicious input and enhance
system resilience. When cities combine strong cybersecurity measures with trust-based validation mechanisms,
to protect the transportation infrastructure, they ensure public safety and foster sustainable growth in digital
mobility-bold act [8]. As cyber systems increasingly constitute the underpinning digital infrastructure for smart
transportation, cybersecurity can then be considered a paramount concern. The systems involve a complex
arrangement of loT devices, sensors, cloud platforms, and communication channels that functions so as to
constantly collect and transmit real-time data and on-the-fly analyses. Yet somehow, having so much
interconnectivity has likewise exposed them through windows of susceptibilities to various forms of cyber-attacks,
such as breaches of data, ransomwares, GPS spoofing, denial of service (DoS), and unauthorized access. These
attacks threaten data integrity and privacy and even jeopardize enormous disruptions in transportation activities,
endangering public trust, safety, and urban operations [9].
Security breaches for smart transportation cause effects that go beyond technical disruption. An intelligent traffic
control system, if compromised, could impose congestion, delay emergency response services, or cause accidents.
Such breaches may have authorized access to sensitive personal data or unauthorized control of vehicle systems
by one kind or another. With this, as the implementation of autonomous vehicles and connected mobility platforms
grows, even a minor security issue may turn into a huge one impacting whole urban infrastructure [10]. Data
privacy and trust become two indispensable pillars on which any secure smart transport framework rests. Data
confidentiality must be ensured with data authenticity and availability, or else one cannot rely upon the system.
Trust management systems allow for the instant evaluation of credibility when it comes to devices and data
sources, which then serve to weed out malicious input and enhance system resilience. When cities combine strong
cybersecurity measures with trust-based validation mechanisms, to protect the transportation infrastructure, they
ensure public safety and foster sustainable growth in digital mobility-bold act.

Il LITERATURE REVIEW
Son et al. (2025) [11] examined smart transportation challenges like congestion and safety, analyzing 26 studies
using the PRISMA framework and NLP tools. They found that 10T, Al, and digital twins enhance traffic flow and
environmental efficiency. The study emphasized integrating digital twin modeling, sensor networks, and Al
decision systems for sustainable urban mobility.
Mirindi et al. (2025) [12] explored the role of Al, ML, and DL in green transportation. They reviewed various
algorithms and applied the UTAUT framework to assess technologies in areas like EVs, MaaS, and micromobility.
Al-driven transport was shown to reduce emissions and improve safety, though concerns about ethics, privacy,
and fairness remain.
Panda et al. (2025) [13] focused on cloud-based smart transportation solutions using loT and data analytics to
manage congestion and pollution. Cloud platforms were shown to offer scalable, real-time monitoring and
improved decision-making, contributing to safer, smarter, and more sustainable urban mobility systems.
Zemmouchi-Ghomari et al. (2025) [14] assessed Al's impact on Intelligent Transportation Systems in cities like
New York and Beijing. Al enhanced traffic flow, reduced accidents, and supported sustainable mobility. However,
challenges such as data quality, privacy, and public trust require long-term policy and economic frameworks for
broader adoption.
Goumiri et al. (2025) [15] reviewed smart mobility in the context of fast, eco-friendly urban transport. They
identified key challenges like parking, routing, and emissions, analyzing successes and failures in real-world
deployments. The study concluded with practical insights for improving future smart mobility solutions.

Table 1 Comparative Analysis of Recent Studies on Smart Transportation

Authors & | Focus Technologies Key Findings Challenges

Reference No. Discussed Identified

Heejoo Son et al. | Role of advanced | 10T, Al, digital | Technologies Data infrastructure

(2025) [11] technologies in | twins, optimization | improve traffic | investment, long-
smart methods flow, safety,
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transportation operational term policy
planning efficiency, and | integration.

reduce

environmental

impact.

Derrick Mirindi et | Role of AI/ML in | Al, ML, DL, | Al enhances energy | Data privacy,

al. (2025) [12] sustainable Genetic Algorithm, | efficiency, reduces | algorithmic

mobility solutions | SVM, CNN, RNN, | emissions, and | fairness, ethical
EVs, MaaS improves safety. governance.

Aditya Kumar | Cloud-based smart | Cloud computing, | Cloud  platforms | Integration of

Panda et al. (2025) | transportation loT, Al enable scalable, | systems,

[13] solutions real-time data | infrastructure
collection for better | scaling.
decision-making.

Leila Zemmouchi- | Al in Intelligent | Machine learning, | Al improves traffic | Data quality, real-

Ghomari et al. | Transportation deep learning, | efficiency, reduces | time  processing,

(2025) [14] Systems (ITS) computer vision accidents, and | security, privacy.
supports
sustainable urban
mobility.

Soumia Goumiri et | Smart Mobility for | Smart mobility, | Smart mobility | Integration of smart

al. (2025) [15] urban loT, data analytics | transforms  urban | mobility systems,

transportation mobility systems, | emission concerns.
solutions addressing key

challenges in traffic

and emissions.

Il OBJECTIVES
e Todevelop deep learning models for detecting vehicle behaviors and cyber-attacks like DoS, Whitewash,
and Brute Force.
e Tointegrate Neural Networks, XGBoost, and Logistic Regression with attention for improved detection
accuracy.
e Toapply SMOTE to address class imbalance and enhance detection of rare attack types.
e To evaluate model performance using Accuracy, Precision, Recall, F1-Score, and ROC-AUC for real-
time reliability.
IV METHODOLOGY
For the purposes of this section, a hybrid machine learning solution that would aid in the detection and
identification of attack types in transportation systems was created. The hybrid model combined three compelling
methods i.e., Neural Networks (NN), XGBoost, and Logistic Regression, using an Attention mechanism to ensure
prediction accuracy taking advantage of the strength of each architecture. NN is able to leverage transportation
data spatial attributes such as trust_degree, location, and time variables. XGBoost can solve the gap by uncovering
sequential dependency learning, which captures long-term behavior patterns in vehicle movement/traffic. Logistic
Regression was used as a baseline linear classifier in order to improve the overall robustness of the model solution.
Adding an Attention mechanism further tunes the model's attention towards making it learn to focus on the most
informative portions of the data, thereby improving its sensitivity to fine-grained patterns of attacks like DoS,
Whitewash, and Brute Force.
A. Implementation tools
Python: Python was selected as the main programming language for implementation because it has a wide range
of libraries supporting data science, machine learning, and optimization operations
NumPy: NumPy is a fundamental library in Python for numerical computing, with excellent support for large,
multi-dimensional matrices and arrays, as well as loads of (advanced) mathematical functions. This means pretty
much everything is done with NumPYy in this project, particularly in terms of data control because of the numerical
data structures that were constructed, which are fundamental to machine learning procedures. NumPy was used
to process the features of trust_degree, hour, and anything that was a time-variable. This meant in the model
training processes data control could be easier using NumPy.
Pandas: Pandas is a high-performance, data manipulation and analytics library for Python. For the purposes of
this thesis, it was used heavily to load, clean, and organize datasets pertaining to transportation into suitable
formats for analysis. The primary preprocessing tasks that were completed included renaming columns and
changing data types, replacing the empty values that were important features in the datasets with suspect values,
and splitting the datasets into appropriate forms for training and testing algorithms, and storing models.

71 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025



Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025
Available at www.rjetm.in/

Matplotlib: This popular Python visualization library was used to create plots like the Confusion Matrix, ROC-
AUC curves, and accuracy/loss graphs. These plots were key in determining model performance, identifying
weaknesses, and communicating results effectively to stakeholders.

Seaborn: Based upon Matplotlib, Seaborn provides an even higher-level interface for creating informative and
beautiful statistical graphics. In this project, it was employed to enrich visualizations for class distributions and
feature importance. Seaborn also facilitated the design of heatmaps for the Confusion Matrix and helped visualize
distribution plots, enhancing interpretability of the classification results.

B. Hybrid Model

The proposed attack detection model integrates Neural Networks (NN), XGBoost, and an Attention mechanism
to effectively capture both spatial and temporal patterns in transportation system data. Initially, NNs are utilized
to extract spatial features by learning patterns in structured input data, which helps in assessing vehicle behaviors
and identifying anomalies that may indicate attacks. Subsequently, XGBoost is employed to analyze temporal
dependencies, modeling the sequential behavior of vehicles by learning from the evolving trust and location
signals. In the final stage, the outputs from both NN and XGBoost are fused using an Attention mechanism, which
dynamically emphasizes the most relevant parts of the input sequence. This mechanism allows the model to focus
on critical time steps and input features that are more likely to reflect attack-induced anomalies. The combination
of spatial feature extraction by NN, temporal learning by XGBoost, and refined focus through the Attention
mechanism enables the model to detect complex, subtle, and low-signal attacks with higher precision, offering a
robust and intelligent solution for transportation system security.

C. Evaluation Metrics

The proposed Neural Network (NN) + XGBoost + Attention combination model was evaluated on a wide suite of
performance metrics to assess its performance for attack detection in transportation systems. The metrics test not
only the model's classification performance (i.e., is it better than chance?), but also its ability to identify harmful
vehicle behaviours. Using a variety of metrics allows a more complete evaluation of the model's ability to be able
to identify normal and abnormal behaviours, including DoS, Whitewash, and Brute Force attacks.

Accuracy

Accuracy measures the overall correctness of the model's predictions across all classes. Specifically, it is the
proportion of accurately predicted cases to the overall number of cases. A high accuracy score indicates that the

model reliably produces precise predictions.
True positive+True Negetive

Accuracy = (D)

TotalNumber of Instance
Precision

Precision measures the ratio of true positive predictions (i.e., accurately detected malicious behaviours) to all
instances predicted positive by the model. In attack detection, high precision guarantees that most raised alerts by

the system relate to real threats, and there are minimal false positives.
True positive

Precision = — — 2
True Positive+False Positives

Recall (Sensitivity)

Recall, or sensitivity, measures the model's capability to correctly identify all existing positive instances i.e., how
well the model identifies all genuine malicious behaviours. This metric is particularly important in security

applications because non-detectable attacks (false negatives) can be very dangerous.
True Positives

Recall = — - ©))
True Positives+False Negatives

D. Confusion Matrix

The Confusion Matrix is a comprehensive table that displays the predictions made by the model for each category:
Non-malicious, DoS, Whitewash, and Brute Force. It shows the number of true positives, true negatives, false
positives, and false negatives, providing a thorough understanding of the model's advantages and disadvantages.
If an excessive number of DoS attacks are misclassified as legitimate behavior, this would show up in the
confusion matrix and prompt targeted improvements to the model. In transport security, this granularity is
invaluable for aligning model performance with actual threat detection needs.

E. ROC-AUC (Receiver Operating Characteristic — Area Under Curve)

The ROC-AUC metric assesses the model's ability to discriminate by plotting the True Positive Rate (or Recall)
against the False Positive Rate at various classification thresholds. The Area Under Curve (AUC) measures this
ability, where 1.0 means perfect discrimination between classes and 0.5 indicates random guessing performance.
A high value of ROC-AUC means that the model had reasonably distinguishable malicious and non-malicious
behaviours. This measure is also useful as it can show us appropriate decision thresholds nosing our select ratio
according to specific security priorities (e.g., prioritize early threat detection even if it means accepting high rates
of false alarms).
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Fig. 2 Flow Chart of Methodology
V  RESULTS AND DISCUSSION
This segment showcases a complete performance evaluation of the hybrid machine learning model that consists
of a Neural Network (NN), XGBoost, and an Attention Mechanism used for attack detection in transportation
systems. The assessment aims to explore classification metrics like Accuracy, Precision, Recall, F1-Score,
Confusion Matrix, and ROC-AUC for an in-depth analysis of a model's performance in identifying and
categorizing corrupted vehicular behaviors, which may include DoS, Whitewash, or Brute Force attacks.
A. Hybrid ML-Based Detection of Attacks and Behavioural Anomalies in Transportation Networks
In earlier works, there has been a structured and systematic framework that was useful to enhance security and
provide anomaly detection in smart transport systems. This framework primarily focused on various aspects of
data improvement, class imbalance, and metrics as needed for classifying the unique types of attacks. This
framework starts with the extraction of transport system data as the raw input resource for analysis. A key first
step is data pre-processing in regards to managing missing values, as well as ensuring the dataset is as balanced
as possible for proper classification. The Simple Imputer method is a model that was used for imputing missing
values, along with SMOTE (Synthetic Minority Over-sampling Technique) for overcoming class imbalance
problems. This is done to ensure the training dataset contains both malicious and non-malicious behaviour
instances in sufficient quantity.
Table 2 Model Performance Metrics

Metric Score
Accuracy 0.9153
Precision 1
Recall 0.8462
F1-Score 0.9167
ROC-AUC 1
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Table 2 showcases the model’s strong classification performance. With an accuracy of 0.9153, it correctly
identifies over 91% of instances. A precision of 1.0000 means all predicted Malicious cases were truly malicious,
with no false positives. The recall of 0.8462 shows it detects most malicious instances, though a small portion is
missed. The F1-score of 0.9167 reflects a balanced performance between precision and recall. Finally, the ROC-
AUC of 1.0000 indicates perfect distinction between Malicious and Non-Malicious cases, confirming the model's
high reliability.
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Fig. 3 Confusion Matrix.
The confusion matrix in Fig. 3 shows the results of the model's classification. It indicates that the model accurately
identified 1349 instances as Non-Malicious (True Negatives) and 1397 instances as Malicious (True Positives).
The matrix also shows that 254 instances were wrongly labeled as non-malicious when they were actually
Malicious (False Negatives). There were no instances misclassified as Malicious when they were Non-Malicious
(False Positives). These values give a clear view of the model's classification performance.

Table 3 Attack Detection Results

Attack Type Count
Non-Malicious 1600
DoS 1349
Brute Force 33
Whitewash 18
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Fig. 4 Accuracy Curve
The accuracy curve in Fig. 4 displays the model's performance over time. The solid blue line shows the train
accuracy, while the dashed orange line represents the validation accuracy. At first, the train accuracy rises quickly,
indicating the model's learning process. The validation accuracy also increases in the early epochs but starts to
vary more after reaching higher values. This suggests that the model might be overfitting on the training data.

74 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025



Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025
Available at www.rjetm.in/

F1-Score vs. Decision Threshold

1.00 4 F1-Score vs. Threshold

0.95 1

0.90 A

0.85 1

F1-Score

0.80 1

0.75 1

0.70 1

0:0 0:2 0:4 O.IG ofa 1.‘0
Threshold

Fig. 5 F1-Score vs. Decision Threshold
The F1-Score vs. Decision Threshold curve in Fig. 5 illustrates how the F1-Score changes as we adjust the
threshold for classifying an instance as Malicious (1) or non-malicious (0). When the threshold is low, the F1-
Score stays high, around 1. This indicates that the model is very sensitive and classifies more instances as
Malicious. As we raise the threshold, the F1-Score gradually drops, showing a decrease in the model’s ability to
identify Malicious instances. The curve points out the trade-off between sensitivity and precision. It can help us

choose the best decision threshold for a balanced F1-Score.
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The F1-Score vs. Decision Threshold curve in Fig. 6 illustrates how the F1-Score changes as we adjust the
threshold for classifying an instance as Malicious (1) or non-malicious (0). When the threshold is low, the F1-
Score stays high, around 1. This indicates that the model is very sensitive and classifies more instances as

Malicious.
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Fig. 7 Training vs Validation Loss
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Figure 7 “Training vs Validation Loss” compares loss value calculated on training and validation data for a span
of 25 epochs. The training loss is shown by the blue curve, whereas the validation loss is shown by the red one.
At the beginning, both losses were high, steadily decreasing as the training continued. But, since the training loss
is decreased rapidly, it means that this model is learning to fit its training data well. On the other hand, the
validation loss seems to decrease a bit slower than the ones in training, and hence suggests that the model

generalizes fairly well to the validation data when both losses decrease with time.
Training vs Validation Accuracy
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Fig. 8 Training vs Validation Accuracy
The Training versus Validation Accuracy plot in Fig. 8 depicts the evolution of the model's accuracy throughout
the training. The blue line corresponds to training accuracy, whereas the orange line corresponds to validation

accuracy.
Feature Correlation Heatmap

VEhI(Ie_Id ﬂﬂm
data.type m Mﬂ

location -

1.0

- 0.8

value -

'JUSt ﬂ
outpt ﬂm

- 0.6

HE
-]
=]

- 0.4

mur ﬂm -002
day_of_week -
- 0.2
month -
trust_degree 0.86 | -0.02
0.0
) ! u

2

vehicle_id

data_type

location

value

trust

output
day_of week -
month -

trust_degree E

Fig. 9 Feature Correlation Heatmap.
The Feature Correlation Heatmap in Fig. 9 reveals strong relationships among trust-related features, with high
correlations between trust and value (0.86), trust and output (0.86), and particularly trust degree with both value
and trust (0.94). These strong correlations indicate that trust-related features significantly influence each other and
are likely key in predicting the target output. In contrast, features like vehicle_id, data_type, location, and hour
show weak correlations, suggesting limited linear interaction with other variables. Overall, the heatmap highlights
the central role of trust metrics in the model’s predictive performance.
VI  Conclusion

This study demonstrates that a hybrid machine learning model incorporating Neural Networks, XGBoost, Logistic
Regression, and an Attention mechanism can significantly enhance cybersecurity in smart transportation systems.
By capturing both spatial patterns and temporal dynamics, and addressing class imbalance with SMOTE, the
model effectively detects various cyber threats with high accuracy and precision. The inclusion of trust-based
features and robust evaluation metrics further confirms the model’s suitability for real-time deployment in smart
city environments. As smart mobility evolves, integrating such intelligent, adaptive, and trustworthy security
systems is essential for ensuring sustainable, safe, and resilient urban infrastructure.
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